Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Type of study
Language
Document Type
Year range
1.
51st European Microwave Conference, EuMC 2021 ; : 841-844, 2021.
Article in English | Scopus | ID: covidwho-1924900

ABSTRACT

We propose a method for remote sterilization of surfaces which follows wireless power transmission principles. Using the self-steering tracking capability of retro-directive arrays (RDAs), an infected area of interest can be sterilized by radiating microwave power in a controlled and efficient manner, thus producing heat for pathogen deactivation. The employed antenna array system offers dual-circular polarization with isolation values of 55 dB which supports the co-location of the transmit and receive parts of the RDA. In particular, the paper reports the use of a 2 x 2 circularly polarized RDA system operating in the S-band, which is used to investigate the possible heat change of a water covered sample for sterilization, placed at different ranges from the transmitting point and rotated in the plane normal to the illumination. The time required to heat the area of interest up 60°C is numerically studied and the capabilities of inducing the needed temperature gradient over the samples is examined. In addition, measurements have been performed using biological samples of the coronavirus (strain Cov-229E-GFP) to demonstrate virus deactivation. The proposed methodology can also be made completely automated and with little operator interaction, representing a new and attractive option for microwave sterilization of pathogens such as those related to the severe acute respiratory syndrome coronavirus (SARS COVID-19). © 2022 European Microwave Association.

2.
Bulletin of the American Meteorological Society ; 103(2):103-105, 2022.
Article in English | ProQuest Central | ID: covidwho-1892031

ABSTRACT

Within this context, fundamental questions regarding the life cycle of convective clouds, aerosols, and pollutants have brought together a diverse, integrated, and interagency collaboration of scientists to collect and analyze measurements, in the Houston, Texas, area, from the summer of 2021 through the summer of 2022, with subsequent modeling studies to address these important research objectives. The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Facility and Atmospheric System Research (ASR) Program, the National Science Foundation’s (NSF’s) Physical and Dynamic Meteorology Program, the National Aeronautics and Space Administration’s (NASA’s) Tropospheric Composition Research and Health and Air Quality Applied Sciences Programs and the Texas Commission on Environmental Quality (TCEQ) are collaborating on a joint set of field campaigns to study the interactions of cloud, aerosol, and pollutants within the coastal, urban environment. Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). Measurement platforms to be deployed: (a) Stony Brook University Weather Truck including dual-polarization X-band phased array radar (ESCAPE), (b) NCAR C-130 aircraft (ESCAPE) (photo credit: C. Wolff), (c) Pandora Spectrometer (TAQ) (photo credit: B. Swap), (d) ARM Tethered Balloon System (TRACER), (e) ARM Mobile Facility (TRACER), (f) C-Band ARM Scanning ARM Precipitation Radar (TRACER), (g) Baylor University–University of Houston–Rice University Mobile Air Quality Laboratory (TAQ, TRACER), (h) Johnson Space Flight Center Gulfstream V aircraft (TAQ). On the ground, multiple fixed and mobile radar systems (Fig. 1a) will be used to track convective cells and perform multi-Doppler analysis for the derivation of velocities within the convective systems over the course of their life cycle.

3.
IOP Conference Series. Materials Science and Engineering ; 1203(2), 2021.
Article in English | ProQuest Central | ID: covidwho-1556680

ABSTRACT

Climate change is regarded as a global scale process in which an increase of magnitude and intensity of severe weather events is observed, thus affecting both air travel as well as airport infrastructure. Although the COVID-19 crisis has a significant negative impact on air travel and thus on the further development of airport infrastructure, the demand for air travel will continue to rise as the crisis nears the end. The aim of this paper is to analyse and highlight the climate change associated hazards for the airport infrastructure as well as for the safety of passengers and goods in the Western part of Romania, mainly Traian Vuia International Airport from Timişoara. Throughout this analysis, aviation related severe weather events, such as thunderstorms, hail events, fog, icing, squalls, low level wind shear, snow falls and heavy precipitation, which affect airport infrastructure and thus air travel, are highlighted. By analysing meteorological parameters from the time scale 1980-2010 together with climate change scenarios, and thus developing weather hazard maps, a better perspective of area-related hazards and therefore customized mitigation measures and adaptation strategies are to be developed. The implementation of modern forecasting equipment such as dual polarization Terminal Doppler Weather Radar (TDWR) is thus necessary in order to prevent loss of human lives, to reduce financial losses and to protect the airport infrastructure and the aeronautical navigation and communication facilities. Long term changes in meteorological parameters include an increase in air temperature, an increase in speed for both horizontal and vertical windshear during severe weather events, an increasing number of air mass thunderstorms and an increase of situations with limited visibility especially during the late autumn and early spring time.

SELECTION OF CITATIONS
SEARCH DETAIL